Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X

Q is empty.

We use [23] with the following order to prove termination.

Lexicographic path order with status [19].
Quasi-Precedence:
[terms1, 0, first2, nil, activate1] > cons2 > [s1, nfirst2]
[terms1, 0, first2, nil, activate1] > recip1 > [s1, nfirst2]
[terms1, 0, first2, nil, activate1] > [sqr1, dbl1] > add2 > [s1, nfirst2]
[terms1, 0, first2, nil, activate1] > nterms1 > [s1, nfirst2]

Status:
dbl1: [1]
first2: [2,1]
0: multiset
nil: multiset
nterms1: [1]
cons2: [2,1]
activate1: [1]
nfirst2: [2,1]
sqr1: [1]
recip1: [1]
terms1: [1]
add2: [1,2]
s1: [1]